The list chromatic index of simple graphs whose odd cycles intersect in at most one edge

نویسندگان

  • Jessica McDonald
  • Gregory J. Puleo
چکیده

We study the class of simple graphs G for which every pair of distinct odd cycles intersect in at most one edge. We give a structural characterization of the graphs in G and prove that every G ∈ G satisfies the list-edge-coloring conjecture. When ∆(G) ≥ 4, we in fact prove a stronger result about kernel-perfect orientations in L(G) which implies that G is (m∆(G) : m)edge-choosable and ∆(G)-edge-paintable for every m ≥ 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs

‎For a coloring $c$ of a graph $G$‎, ‎the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively‎ ‎$sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$‎, ‎where the summations are taken over all edges $abin E(G)$‎. ‎The edge-difference chromatic sum‎, ‎denoted by $sum D(G)$‎, ‎and the edge-sum chromatic sum‎, ‎denoted by $sum S(G)$‎, ‎a...

متن کامل

Choosability, Edge Choosability, and Total Choosability of Outerplane Graphs

Let χl (G), χ ′ l (G), χ ′′ l (G), and 1(G) denote, respectively, the list chromatic number, the list chromatic index, the list total chromatic number, and the maximum degree of a non-trivial connected outerplane graph G. We prove the following results. (1) 2 ≤ χl (G) ≤ 3 and χl (G) = 2 if and only if G is bipartite with at most one cycle. (2) 1(G) ≤ χ ′ l (G) ≤ 1(G) + 1 and χ ′ l (G) = 1(G) + ...

متن کامل

Chromatic-index-critical graphs of orders 13 and 14

A graph is chromatic-index-critical if it cannot be edge-coloured with ∆ colours (with ∆ the maximal degree of the graph), and if the removal of any edge decreases its chromatic index. The Critical Graph Conjecture stated that any such graph has odd order. It has been proved false and the smallest known counterexample has order 18 [18, 31]. In this paper we show that there are no chromatic-inde...

متن کامل

INSTITUTO DE COMPUTAÇ O UNIVERSIDADE ESTADUAL DE CAMPINAS Edge-Coloring of Split Graphs

The Classification Problem is the problem of deciding whether a simple graph has chromatic index equals to ∆ or ∆+1, where ∆ is the maximum degree of the graph. It is known that to decide if a graph has chromatic index equals to ∆ is NP-complete. A split graph is a graph whose vertex set admits a partition into a stable set and a clique. The chromatic indexes for some subsets of split graphs, s...

متن کامل

Proof of the List Edge Coloring Conjecture for Complete Graphs of Prime Degree

We prove that the list-chromatic index and paintability index of Kp+1 is p, for all odd primes p. This implies that the List Edge Coloring Conjecture holds for complete graphs with less than 10 vertices. It also shows that there exist arbitrarily big complete graphs for which the conjecture holds, even among the complete graphs of class 1. Our proof combines the Quantitative Combinatorial Nulls...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 341  شماره 

صفحات  -

تاریخ انتشار 2018